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Abstract—Knowledge of the kinematic state of rovers is critical
to navigation, path reconstruction and exploration, especially
on rugged terrain like planetary surfaces. Existing methods
employ many encoders, potentiometers and hall sensors. These
add components and wiring to moving parts. The components
are susceptible to mechanical and electronic failures, add mass,
and some require thermal regulation. In addition, the sensor
wires are susceptible to bending, flexing and wear. Where
miniaturization counts, the limitations on mass, size and power
encourage elimination of sensors wherever possible. This paper
presents a method to estimate the kinematic state of rovers using
only a downward-facing fisheye camera. This novel approach
implements a vision algorithm to obtain kinematic state infor-
mation in planetary rovers. The two additional benefits of the
technique are (1) redundancy to proprioceptive measurements,
(2) means for perceptive visual odometry. The method uses a
single camera to estimate 10 degrees-of-freedom (associated with
steering, driving and suspension) on the AutoKrawler, a rover
test platform for planetary exploration. Motions are estimated
by self-perception - combining fiducial marker tracking, optical
flow techniques and the kinematic constraints of rover mechanics.
Experimental results, obtained from the rover operating in an
environment analogous to the lunar surface, are presented. The
results obtained are compared with ground truth data to validate
the approach.

I. INTRODUCTION

Planetary rovers have locomotive capabilities designed for
traversing highly uneven terrain. A rover’s axles or suspension
act as passive hinges, allowing the wheels to make contact
with uneven surfaces. Steering is critical to negotiating ter-
rain. Understanding the real-time kinematic state of a rover
provides timely information about abnormal motion and sup-
ports operational decisions. Such knowledge proves useful for
rover guidance, navigation and safeguard. This information is
also fundamental to modeling rover odometry. Proprioceptive
sensing has for long been the modus operandi to obtain the
aforementioned data, providing accurate estimates of position,
orientation and motion of links and joints.

Space technology typically employs a large number of
sensors to obtain kinematic state information. For example,
the states of the Mars Rover prototypes are determined by six

Figure 1: The AutoKrawler traversing uneven terrain in a lunar
analogue site.

wheel encoders, three accelerometers, joint potentiometers for
bogey angles and a sun sensor [1]. The problems with such a
system are manifold, and of significant interest in the domain
of space robotics. Optical encoders have rotating mechanical
disks that reduce system reliability. Atmospheric dust, similar
to that of Mars, may hinder optical wheel encoders [2]. A
pressing concern with encoders is the numerous electrical
conductors required. The Sojourner rover comprised of ten
motors, each with an optical encoder. The motors required
two conductors each to drive, but the encoders required six
wires each to moving parts- translating to 80 conductors fed
from the body of the rover [3]. In an articulated rover, special
care must be taken in routing cables to prevent wear of wire
harnesses. In addition to flexing and bending with suspension,
when exposed to the frigid environment, the wires can stiffen
and break [3]. Sensing elements with electronic components
may require thermal protection and this additional insulation
can compromise total system mass. 50% of a typical rovers
mass distribution is generally dedicated to its subsystems [4],
and the myriad sensors reduce the viable scientific payload
limit.



In the past, vision algorithms were used sparingly on plan-
etary missions, primarily due to the on-board computational
constraints. A major leap in this direction was the NASA/JPL
Mars Exploration Rover (MER) mission, where algorithms
performed tasks such as visual odometry, stereo vision and
feature tracking [5]. All processing was performed off-board,
either on Earth or the lander. Subsequent FPGA implemen-
tation of the same algorithms have shown performance im-
provements of three orders of magnitude and are now utilized
on-board large rovers [6]. These encouraging results point to
full-fledged vision systems in future missions with minimum
latency, to perform rover odometry and safeguarding, even on
small, simple rovers.

This research conceives and demonstrates a novel method of
optical kinematic state estimation of planetary rovers using a
downward-facing monocular fisheye camera. In this paper, 10
degrees-of-freedom of a planetary rover are estimated. Fiducial
marker tracking is used to obtain pixels of interest from the
camera image. Using a spherical camera model, 2-D image
coordinates are projected to 3-D points on a unit sphere around
the camera’s focal point. These are subsequently mapped to
real-world coordinates using planes defined by the rover’s
kinematic constraints. 8 defined positions are tracked and a
geometric approach is developed to determine the axle roll
and steering angles. Odometry is performed for all four wheels
by using an optical flow algorithm directly on the treads, as
opposed to traditional egomotion estimation. The methodology
is exhibited and evaluated by application to the AutoKrawler
(see Figure 1), a highly-versatile, double-Ackermann rover test
platform for planetary exploration.

The aforementioned system was evaluated on datasets gen-
erated from field experiments conducted in a lunar analogue
site. The rover was tele-operated in conditions that mimic risk-
prone traversals, where knowledge of kinematic state can aid
control decisions. Results show close agreement between data
from our technique and ground truth data from proprioceptive
sensors onboard.

II. RELATED WORK

The kinematic study of complex rocker-bogey mobility
systems have been a prominent research problem. [7] and
[8] describe a body of work surrounding the Rocky-7 Mars
Rover that estimates position, velocities, contact angles and
orientation of the robot. Systems inputs are generally ac-
celerometer, gyroscope and encoder data, without involving
visual observation. Lamon and Seigwart demonstrate the ben-
efit of kinematic knowledge by performing 3-D odometry,
showing a significant improvement in results on rough terrain.
A controller that minimizes slip based on state information
is also developed [9]. Visual self-perception (or the strategy
of observing oneself), has been used to generate kinematic
models of robotic manipulators [10]. Its joint configuration
however, is determined solely by its own actuation and not by
the environment.

Optical flow methods using pyramidal Lucas-Kanade [11]
have been previously explored using a downward-facing fish-
eye by Seegmiller [12] to perform robust visual odometry.
The algorithms employ RANSAC outlier rejection, which
has been incorporated in this body of work. Fang’s work
also highlights the importance of a minimally obstructing,
robust camera support structure for the selected configuration
[13]. Fiducial markers have been used, albeit sparingly, in
planetary robotics for accurate instrument positioning and as
calibration targets [14]. Scaramuzza obtained a generalized
omnidirectional camera model for fisheye and catadioptric
systems, that has been used here [15].

III. KINEMATIC MODEL

A. Rover Overview

The AutoKrawler is a four-wheel, double-Ackermann
steered rover specialized to traverse adverse terrain. A passive
body-axle suspension system allows the rover to maintain
compliance with uneven, rugged terrain. For an illustration of
the Cartesian coordinate conventions and degrees-of-freedom,
refer to Figure 2. Each articulated axle of the dual-axle
configuration can perform roll about the y-axis and translation
about the z-axis. The steering swivel joints can rotate in the
range of [-30◦, 30◦] about the axle frame’s z-axis.

Figure 2: Depiction of (i) The coordinate frames of the camera, axle
and wheels, illustrated with XYZ (RGB) axes. (ii) The permitted
rotational and translational motions of the robot about their respective
axes.

In conceptualizing the state estimation, several reasonable
assumptions on rover kinematics are made:

• Angular movement of wheels on a common axle are
assumed to be identical - giving each axle a single
steering angle.

• The mechanical connection between the axle and body
of the AutoKrawler comprises of a plurality of links and
joints. However, for all practical purposes, the axles are



assumed to only exhibit one rotational degree-of-freedom
(about y-axis).

• It is assumed that there is no relative translation in the
x-direction between the axle and the body frame. This
allows us to approximate the motion of each axle to be
on a vertical plane perpendicular to the y-axis.

• The wheels of the rover are modelled as cylinders (of
radius r = 11.5cm) that rotate with the wheel frame,
centered at its origin.

B. Coordinate Frames and Variables

The translational and rotational displacements of rover joints
and linkages are expressed via homogeneous transformation
matrices. Examples of coordinate frame locations are provided
in Figure 2. With transformation matrices, a kinematic chain
of coordinate frames can be represented. Below, an equation
is used to transform the center of the wheel (P) from the
swivel joint frame to the camera frame. To do so, the 4 × 1
vector [x y z 1]ᵀ is successively pre-multiplied with A

ST
(transform from swivel joint to axle frame) and C

AT (transform
from axle to camera frame):

CP =C
A TA

S TP (1)

In (1) CP represents the real-world coordinates of a wheel
center, with the reference frame being the camera focal point.
The degrees-of-freedom estimated are 10 in total:

(i) Two rotational (Axle roll angles) - ψF , ψR

(ii) Two translational (Axle-Body vertical distances) - dF , dR
(iii) Two steering - λF , λR
(iv) Four rotational - θFL, θFR, θRL, θRR

IV. SYSTEM DESCRIPTION

A. Camera Model

The research problem necessitates that all motions (axle
roll, steering and wheel rotation) of the rover be detected

Figure 3: Fisheye lens’s field-of-view with minimally occluding
camera mount. The four thin plates in the image constitute the mount
structure.

with a single camera. The best way to achieve this is with
a downward-facing omnidirectional camera. The choice of a
fisheye lens over a catadioptric lens is inconsequential, as a
unified camera model [15] is applicable to both. The body
frame is fit with a mount to house the downward-facing fisheye
camera. The mount minimally occludes field-of-view, with
four orthogonal plates along planes that intersect the camera
center (as seen in Figure 3). Color images are acquired with a
resolution of 640× 480 at 30 frames per second. The chosen
resolution provides adequate pixels to work with, while at the
same time remaining computationally feasible.

The MATLAB toolbox developed by Scaramuzza et al. [16]
is used to calibrate the camera with a planar checkerboard
pattern. The model uses affine transforms to handle misalign-
ment between the camera’s optic center and the focus point
of the lens. A 4th order polynomial is utilized to account
for the camera’s radial distortion. Any real-world point can
be accurately projected to a point on a unit sphere, with the
camera’s focal point as its center.

B. Fiducial Markers

Passive, mono-colored square markers are used, and the
paper does not attempt to validate tracking robustness. In our
application, magenta is chosen due to its hue value being
distinct to that of the rover’s surrounding. Eight markers are
placed on the rover - two collinear pairs on the front and rear
axle plates, and two pairs on the Ackermann tie rods.

Figure 4: Mono-color markers visible on the front and rear axles.
Pairs A and C track front and rear axle roll respectively, while pairs
B and D track front and rear steering angles. Also seen are the white
correction markers present on the wheels.

The process pipeline first performs color-based image seg-
mentation in the HSV (Hue, Saturation, Value) color space.
After noise-removal by erosion and dilation, pixel positions
of the contour centers are obtained. These pixel positions
are transformed to world coordinates based on the geometric
constraints, as described in subsections V-A and V-B. Each
wheel tread consists of a white marker, referred to henceforth
as a correction marker. It is tracked via thresholding to correct
wheel angular rotation, as described in subsection V-C.



C. System Design

A compositional view of the required variables is taken and
the resulting system is simple and modular (see Figure 5). Axle
roll, axle-body vertical distance and steering angles (ψF , ψR,
dF , dR, λF , λR) are computed at once, requiring fisheye image
data. Wheel angular rotations (θFL, θFR, θRL, θRR) require all
the aforementioned variables and fisheye image data. This is
because optical flow is performed only on dynamic observation
windows, as described in V-C. If these variables are not
present, due to momentary loss of marker tracking, flow
operations are performed using the prior state of the rover. In
the absence of computational overhead, the system operates at
the frame rate of the camera. All vision tasks are optimized
to defined regions-of-interest based on kinematic constraints,
instead of being performed on the entire image.

Figure 5: ROS Nodes and Topics and their relationship in the system.
tf indicates transform matrices of the rover.

V. ESTIMATION METHODS

The following subsections describe how the degrees-of-
freedom are obtained. All the estimation methods use world
coordinates as inputs, and not pixel positions.

A. Estimation of Axle Configuration

The kinematic state estimation begins by calculating axle
roll (ψF , ψR). By making the assumption that the axle has
only one rotational and one translational degree-of-freedom
(refer to Section III-A), markers are constrained to a plane.
This is defined by:

y =

{
+c, front axle
−c, rear axle

(2)

where c ∈ R>0.

As explained in section IV-A, the omnidirectional camera
projects a pixel to a point on a unit sphere - (a, b, c). The
world coordinates of the marker centers are computed by
finding the intersection point between the ray through the
points {(0, 0, 0), (a, b, c)} with the plane defined in equation 2.
The two marker coordinates are subtracted to obtain a vector
that represents axle orientation, ~v = xî + yĵ + zk̂. Finally,
ψ is computed as the directed angle between ~v and vector

~u = î (unit vector on x-axis). The midpoint of the two marker
coordinates is the rotational center of the axle, and its vertical
distance from the camera frame is the axle-body distance (d).

B. Estimation of Steering Angle
In steering angle estimation, a plane that rotates about the

y-axis (similar to axle rotation) is considered. In the absence
of axle excursion, the normal to the plane is [0 0 1]ᵀ.
However, the axle roll must be accounted for by computing a
new normal:

~n′ = Ry(θ)

 0
0
1

 =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 0
0
1

 =

 sin θ
0

cos θ

 (3)

where θ is the angle of roll and Ry(θ) is an elemental
rotation about the y-axis. The position vector of the axle’s
rotational center is represented by ~ro.

Thus, the plane considered is defined as:
~n′ · (~r − ~ro) = 0 (4)

Similar to section V-A, the ray-plane intersection is com-
puted to get centers of the steering markers in world coordi-
nates. Euclidean distance between marker pairs is calculated
and the given ratio is defined :

x =


d(B[1],A[1])
d(B[2],A[2]) , front axle

d(D[1],C[1])
d(D[2],C[2]) , rear axle

(5)

where marker labels (A,B,C,D; 1, 2) are assigned as per
Figure 4. The geometric arrangement of the tie rod ensures
that the ratio is ≈ 1 when the wheels aren’t steered. The ratio
is greater than 1 if steered in one direction, and less than 1
is steered in the other. To obtain a relation between the ratio
x and wheel alignment, manual calibration is performed. x
vs. steering angles is tabulated, where steering angle is set to
values in the range of [-30◦, 30◦]. The calibration equation
is a second-order polynomial f(x) fit to the data, such that
λ = f(x) (see Figure 6).

Figure 6: 2nd degree polynomial regression for steering angle vs.
distance ratio. The red points indicate tabulated readings and the
cyan curve is the polynomial fit.



C. Estimation of Wheel Angular Rotation

Optical flow provides vital knowledge of the arrangement
of features in an image, and change in this arrangement over
a sequence of frames. Egomotion estimates can be obtained
from analysis of image sequences, as performed in [2], [12]
and [13]. It has computational advantages over structure from
motion algorithms, making it ideal to run online.

Lucas-Kanade optical flow is chosen, an established algo-
rithm for correlated feature tracking [11]. Sparse feature sets
are identified by the Shi-Tomasi corner detection algorithm
[17]. Pyramidal implementation of Lucas-Kanade [18] relaxes
the small displacement constraints of the algorithm and works
with coarse variations. In our image sequences, flow is com-
puted in the forward and backward direction with respect to
time. All feature vectors that are inconsistent between frames
are discarded.

Figure 7: Lucas-Kanade feature tracking over three consecutive
frames. The red dots indicate feature positions and the green trails
show the direction of motion. There is a shift in features towards the
left, and features may disappear and appear between frames.

The technique is applied on an unrectified fisheye image
sequence to give 2-D displacement vectors. As highlighted in
III-A, the rover’s wheels are modelled as finite cylinders. It is
defined by:

(i) A fixed radius of r = 11.5cm
(ii) Cylinder axis vector ~v = ~a −~b, where ~a and ~b are the

base center position vectors in world coordinates. These
points are obtained with knowledge of ψ and λ, along
with the position of the swivel joints in the axle frame
and the wheel centers in the swivel joint frame.

Similar to ray-plane intersection computed in V-A, the ray-
cylinder intersection point is computed. The intersection point
represents the world coordinate position of a point on the
wheel’s surface.

Feature search is performed in a dynamic observa-
tion window of fixed area, so as to only focus on the
wheel tread (as seen in Figure 7). The position w60 =
[0 ±r cos 60 r sin 60] with respect to the wheel coordinate
frame is mapped back to a 2-D pixel coordinate and treated as
the window center. This ensures that the flow is invariant to
axle roll/translation and steering angle. Between frames, the
arc-length travelled in world measurements is computed. To
get angular displacement α(i) of a feature i, given its position
on the circle’s edge in consecutive frames (p1 and p2):

α(i) = cos−1
(
2r2 − |p1 − p2|2

2r2

)
(6)

α is a 1 × n size matrix, where n is the number of
features tracked. Rather than computing the mean angular
displacement directly, Random sample consensus (RANSAC)
is used to reject outliers. These outliers may appear as a
result of self-shadowing or occlusion. The RANSAC algorithm
begins by selecting random angular displacements from the
matrix α. The randomly selected value is compared with
rest of the set, and all those that are approximately equal
(within a tolerance range t) are treated as inliers for the
selected model. After a defined number of iterations, the model
with the maximum number of inliers is considered and its
outliers are discarded. The mean of this set is taken to be
the final angular displacement between the frames. The angle
of rotation is incremented every frame, and the derivative of
angular displacement with respect to time gives wheel angular
velocity.

The demerit of a sparse feature set is the loss of tracking due
to a lack of interesting features, or if there is image blur. When
incremental angular rotation is observed, these inaccuracies
accumulate. This can lead to θ drifting far from its ground truth
over long traverses. Correction markers on the wheels (visible
in Figure 4) clearly indicate each complete rotation. They are
used to prevent this drift in angular rotation. The marker is
segmented out by thresholding, and once every rotation, theta
is corrected:

m = (θ − co) div 2π

θcorrected = 2mπ + co
(7)

where m ∈ Z and co is the value of θ when the first
correction marker was encountered.

VI. RESULTS

The performance of the method was evaluated on datasets
acquired in an outdoor field experiment (see Figure 8). The
rover was tele-operated at a location where the terrain charac-
teristics and features served as an excellent analogue to lunar
conditions.

Figure 8: Optical kinematic state estimation field test.



(a) Front Axle

(b) Rear Axle

Figure 9: Estimated axle roll vs. Ground truth IMU data

(a) Front Axle

(b) Rear Axle

Figure 10: Estimated steering angle vs. Ground truth potentiometer data



(a) Front Axle (b) Rear Axle

Figure 11: Estimated axle roll error with respect to Ground truth

(a) Front Axle (b) Rear Axle

Figure 12: Estimated axle roll error with respect to Ground truth

Figure 13: Estimated wheel rotation angle vs. Ground truth motor encoder data

Figure 14: Drift in Estimated wheel rotation with respect to Ground truth data



Dataset Duration
(secs)

Axle Roll MAE Steering Angle MAE Maximum
wheel rotation
drift (rad)Front Rear Front Rear

Dataset 1 82 1.65◦ 1.51◦ 2.49◦ 1.98◦ 0.86

Dataset 2 170 1.41◦ 1.32◦ 2.40◦ 2.49◦ 3.70

Dataset 3 257 2.41◦ 1.97◦ 1.86◦ 2.55◦ 1.78

TABLE I: Mean Absolute Error (MAE) and Wheel rotation drift
computed for three independent datasets

Ground truth data was recorded via three inertial mea-
surement units for axle roll, two steering potentiometers for
steering angle and a motor encoder for wheel angular rotation.
The image sequences of three independent datasets, each
traversing the span of the test-site, were used as inputs to
estimate the 10 degrees-of-freedom.

Figures 9 to 14 are all plotted using dataset 2. Figure 9
and 10 illustrate the variations in ψF , ψR and λF , λR over
time. The difference between the ground truth data and the
estimated data is represented by Figure 11 and 12. The 2
methods correspond significantly well over all datasets, as seen
in Table I, which shows the method’s mean absolute error.
Figure 13 plots the average of θRL and θRR compared against
the rotations output from the rear motor encoder. Figure 14
shows the estimation error of the aforementioned graph.

The results are found to be highly satisfactory, and convey
overall agreement between optical and conventional methods.
Nevertheless, certain sources of error have been identified as
below-

(i) Drop in frame rate results in the loss of continuous data.
Frame rate is critical in the case of optical flow, where
features are lost.

(ii) Excessive camera mount vibration results in noisy out-
put.

(iii) Loss of marker positions due to self-shadowing causes
gaps in kinematic state data.

(iv) Self-shadowing on wheels alter direction of optical flow
vectors, giving erroneous angular rotation.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a novel approach to kinematic state
estimation, and the results demonstrate high confidence in a
single camera system. The method successfully precludes nine
proprioceptive sensors, to achieve comparable kinematic state
estimation with a single camera. As rovers minimalize and as
reliability call for redundancy, state estimation via vision will
be incorporated into planetary rovers. This is well-supported
by the predicted increase in computational power in space
robotics.

The method sets a precedent and provides a foundation
for further work in vision-based kinematic state estimation.
Future work would include developing an optimized version
of the algorithm, capable of running on-board a planetary
rover. Self-shadowing and abrupt changes in lighting affect
the system adversely, and robustness to self-shadowing [12]

and illumination-invariant tracking are rewarding avenues for
further research. In addition, kinematic state estimation has
no theoretical dependence on fiducial markers, and future
work could focus on tracking inherent features of the robot.
A downward-facing fisheye camera can also perform visual
odometry, that tracks terrain features to give motion estimate.
Future work will have visual odometry and optical kinematic
estimation in conjunction to achieve unprecedented odometry
with utmost simplicity. With two independent representations
of motion, rover slip can also be detected.
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