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ABSTRACT 
Current methods for inspection of spent nuclear fuel storage basins involve lowering a single camera for                
visual inspection of walls and other structures. We present a localized inspection solution where the               
images are automatically annotated by localization information and a 3D model of the inspected area is                
generated. The system consists of an underwater sensor pod containing a stereo pair of cameras, light                
source, inertial measurement unit, and a pressure sensor. The sensors are time synchronized to provide               
precise measurements. We describe both the sensor pod and the algorithms that keep the pod localized.                
Preliminary results from in-air and underwater testing of a prototype are presented. 
 
INTRODUCTION 

Spent nuclear fuel is stored underwater in fuel storage basins, which provide cooling and radiation               
shielding. This includes the concrete L-Basin at the Savannah River Site. L-Basin must be regularly               
inspected to ensure structural integrity. Based on observation of exposed exterior walls of L-Basin, there               
are known cracks through which water seepage occurs, but it is difficult to identify the corresponding                
sites of these cracks inside the basin. The current inspection method involves lowering a single camera,                
either on a stick or a string, to visually inspect the basin walls. Unfortunately, the current method suffers                  
from several drawbacks. It is difficult for human operators to keep track of the precise location of a                  
camera, especially when (in the case of a camera on a string), their control over the camera is limited. The                    
presence of algae growing in L-Basin also complicates the inspection task, as an autofocus camera will                
tend to focus on floating algae, resulting in blurry images of the intended inspection targets. Given these                 
shortcomings, a better inspection solution is needed. 
This paper presents a localized inspection solution designed for the L-Basin inspection application             
featuring a stereo pair of cameras. The system uses a robotics technique, simultaneous localization and               
mapping (SLAM) to build up a map of the inspected region while determining the sensors' position and                 
orientation relative to this map. An inertial measurement unit is used to improve the positioning. Precise                
synchronization between the cameras and the inertial measurement unit is an especially advantageous             
feature of the solution. 
The system features cameras with large sensors relative to the camera size, making them particularly               
suited to underwater imaging. Using data from both cameras taken at the same time, a 3D reconstruction                 
of the viewed scene can be built. The system is also designed such that it will not focus on algae. 
By precisely tracking camera positions, the system can determine what areas were covered and whether               
there are gaps in the data. The constructed surface maps can also be stored and compared across multiple                  
inspections, making it easy for operators to track change over time. This is particularly valuable when                
trying to understand basin structural integrity. 
The objective of the presented system is to provide high fidelity 3D models of surfaces (e.g. concrete                 
walls) or objects to be inspected. The 3D model will allow for visual inspection by a remote operator,                  
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automatic anomaly detection (e.g. cracks in concrete), and automatic detection of changes when             
compared to prior models from earlier inspections. 
In what follows, we first describe the sensor pod system, followed by the algorithms to provide localized                 
imaging and mapping. We then show results from an underwater test and a preliminary in-air               
experimental evaluation, before concluding. 
 
DESCRIPTION 

The purpose of the sensor pod is to house all the sensors that will be used for inspection safely in an                     
underwater environment. The sensor pod consists of an underwater housing, a sensor assembly, an              
external underwater light and a shore cable providing power and a data connection to a top-side or off-site                  
control station. The control station consists of a power supply and a laptop for data processing and                 
recording. 
The underwater housing is shown in Fig. 1 and consists of a polycarbonate tube with two end plates that                   
provide a watertight seal. The sensor assembly (see Fig. 2 for details) is fixed on the rear end plate and a                     
viewport made of optically clear acrylic is epoxied on the opposite end of the polycarbonate tube. Four                 
wing nuts press a circular aluminum plate that prevents axial movement of the polycarbonate tube off of                 
the o-ring seal on the rear end plate. Three through holes for the power and Ethernet cable, underwater                  
light cable, and pressure sensor are located on the rear end plate. 
 

 
Fig. 1. As-built underwater sensor pod (left) and exploded CAD design of sensor pod (right). Wingnuts 
press a circular aluminum plate that presses the polycarbonate tube over the o-ring seal on the rear 
aluminum plate. 
 

To enable accurate 3D modeling, two high resolution (5M pixels, 2448x2048 pixels) 0.169m CMOS              
color cameras are combined into a stereo configuration. The field of view is 56.9° x 43.9°, a compromise                  
between providing high resolution surface information and wider field of view useful for navigation. For               
surfaces at 1m distance, a single pixel images a 0.003m by 0.003m area. The cameras are mounted to a                   
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solid aluminum block to ensure rigidity, simplifying camera calibration. The baseline is adjustable for              
experimentation with different interocular distances between 0.06m and 0.12m. 
 

 
Fig. 2. Sensor assembly inside the underwater housing 

 

The shore cable provides power and a gigabit Ethernet data connection. Therefore, no onboard battery is                
needed, and data recording and processing is done top-side or off-site. Ethernet allows for a maximum                
cable length of 100m. While USB3 would provide for a higher bandwidth, cable length is limited to a few                   
meters, which is insufficient even for top-side operation. Gigabit Ethernet is still fast enough to support                
10 frames per second from both cameras at their highest resolution (using raw Bayer pattern color coding)                 
in addition to data from the other sensors. A 5-port gigabit Ethernet hub directly connects the two cameras                  
and the onboard computer with the shore cable. The onboard computer interfaces the inertial and pressure                
sensors to the network connection to the surface. 
An underwater LED light provides selective illumination with adjustable brightness. The LED is             
connected by a cable to the main underwater housing. This allows the light to be placed at a sufficient                   
distance from the cameras to reduce backscatter from any particulates in the water column. The LED is                 
controlled from the onboard computer using a pulse width modulated signal to adjust brightness. 
In addition to the stereo cameras, state estimation relies on a MEMS inertial measurement unit (IMU) to                 
provide linear acceleration and rotational velocity in three axes, as well as a pressure sensor to provide a                  
depth measurement. Data from the stereo cameras and IMU are fused together in a tightly coupled                
smoothing framework, allowing online calibration of sensor biases as well as refinement of projective              
geometry observed by the cameras. While the pressure sensor provides an absolute measurement on the               
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downward axis, a camera/IMU fusion algorithm estimates the gravity direction, providing an absolute             
measurement on pitch and roll angles. Therefore, the state estimate can only drift in three degrees of                 
freedom: Forward, sideways, and yaw. Drift can be significantly reduced or even eliminated using              
modern SLAM techniques, depending on the specific sensor trajectory. 
Sensor synchronization is essential toward accurate localization and modeling. In addition to the usual              
synchronization of the left and right camera of the stereo pair, the IMU measurements also need to be                  
timestamped appropriately. All three sensors have their own internal clocks; however, those will drift              
with respect to each other over time. Synchronization is provided by the left camera triggering the right                 
camera whenever it takes an image, facilitated by a connection between the two cameras as shown in the                  
wiring diagram in Fig. 3. Upon each triggered image, the right camera generates a reset signal for the                  
IMU, which resets an internal counter that is used to timestamp its measurements. In combination, with                
some logic, it is possible to estimate the time drift between left camera and IMU, and also be robust to                    
dropped frames from any of the sensors. 
 

 

 
Fig. 3. Sensor assembly wiring diagram. The components include two Pointgrey GigE            
BFLY-PGE-50S5C-C machine vision cameras, an Epson G364PDC0 inertial measurement unit (IMU), a            
BlueRobotics Bar30 pressure sensor, and a BlueRobotics Lumen Subsea Light. 
 
UNDERWATER TESTING 
We tested the sensor pod in a miniature tank environment, as shown in Fig. 4 (a). This serves as a                    
proof-of-concept of our platform for underwater nuclear environments. Prior to testing, the stereo pair              
was calibrated in water and the housing was submerged for extended periods to check for leaks. Objects                 
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of interest were suspended or secured in the tank - specifically a bowling ball and checkered wooden                 
piece.  A gantry system was used to accurately position the sensor pod, and execute a specified trajectory.  
The data acquired from the tests were used to generate dense 3-D reconstructions via structure from                
motion (SfM). This was performed offline on the image sequence from a single camera using openMVG                
[17] and openMVS [18]. The multi-view geometry (MVG) pipeline recovers camera poses and generates              
a sparse point cloud via triangulation of image features. This point cloud is then fed to open multi-view                  
stereo (MVS), which builds a textured mesh rendering of the scene.  
 

 
Fig. 4. (a) The underwater test setup, comprising of the sensor pod mounted on a gantry system, and the                   
test objects. (b) Dense 3-D reconstruction results (bottom) along with images of the objects (top).  
 
As shown in Fig. 4 (b), we obtained high-quality reconstructions of test objects in underwater               
environments. This validates both the waterproofing of the sensor pod, as well as the imaging quality of                 
the sensors.  
 
ALGORITHMS 
Visual odometry (VO) and inertial navigation are two important technologies for mobile robotics and              
simultaneous localization and mapping (SLAM). The former uses algorithms to calculate frame-to-frame            
rigid body transformation with respect to cameras, and the latter uses inertial measurement units (IMU)               
along with other navigation sensors (e.g. GPS) to measure robot trajectories. In the past, VO and inertial                 
navigation have been developed in the computer vision community and robotics community separately.             
Also, due to hardware and computational constraints, the fusion of camera and inertial sensors was               
difficult to achieve. Recent advancements in camera hardware and inertial measurement units (IMU) have              
facilitated research efforts to develop sensor fusion technologies combining the two. Moreover, novel             
probabilistic frameworks and optimization techniques using factor graphs have permitted SLAM           
algorithms to perform more efficiently and in real-time [9], [10], [4]. These advancements in both               
hardware and in the underlying theory have prompted greater interest in visual-inertial navigation (VIN)              
by the robotics community. 
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Vision and inertial information are complementary to each other in SLAM applications. For instance,              
cameras are exteroceptive sensors which collect dense appearance information of the surroundings. This             
rich information is useful for 3D reconstruction, damage detection, and obstacle avoidance. Moving             
cameras enable us to infer the three-dimensional structures of the geometric world, which can further be                
utilized for calculating long term odometry. On the contrary, IMUs are interoceptive sensors that measure               
linear acceleration and angular velocity at a high rate. However, the inherent noises and time-varying               
biases have made IMUs difficult to use standalone and can only be trusted for short-term state estimate.                 
The dual nature of visual and inertial information complements each other, and provide results for               
superior state estimation than from either one alone. However, fusing the two is nontrivial. In addition to                 
highly nonlinear sensor models, the algorithms need to accurately and consistently account for sensor              
noises and time-varying biases. Recent works in VIN have addressed these issues and demonstrated              
impressive results. 
The current state-of-the art VIN systems can be broadly categorized into filtering-based and             
smoothing-based methods [1], [2], [3]. Filtering-based systems such as MSC-KF [1] are derived from              
extended Kalman filter. Such systems achieve high frame-rate performances because of its simple             
prediction and correction steps. However, because these methods perform single linearized update for             
nonlinear systems, they generally suffer from accumulated linearization errors. In smoothing-based           
methods, sensor measurements and states are formulated using Gaussian assumption in a graphical model              
called a factor graph [4]. Such formulations store past states and measurements in a unified framework for                 
optimization, solving the maximum a posteriori (MAP) estimation for nonlinear least squares (NLS). An              
example showing a typical landmark-based SLAM factor graph is shown in Fig. 5. Smoothing-based              
methods provide better accuracy in nonlinear systems because they iteratively solve for the minimum of               
an optimization problem. However, more computational resources are required. In fact, extended Kalman             
filter is a special case of the factor graph smoothing-based method, where it only keeps one past state and                   
performs one update step. 
  

 
Fig. 5. A factor graph is a bipartite graph. The larger circles representing “variables”, which are connected                 
to each other by smaller circles representing “factors”. The variables in a typical factor graph represent                
states we want to estimate, while factors are measurements that relate different states. Optimization tools               
such as iSAM2 utilizes factor graphs to perform inferences and solve for maximum a posteriori (MAP)                
estimation for a nonlinear least squares (NLS) problem.  
In either filtering-based or smoothing-based system, there are two ways to fuse visual information with               
inertial information. The two different methods are described as loosely-coupled or tightly-coupled. In             
loosely-coupled VIN systems, visual information is incorporated into the states as odometry information.             
This is achieved by using VO algorithm either with feature-based methods such as ORB-SLAM [14],               
[15], Libviso2 [11] or direct methods such as LSD-SLAM [12]. Fig. 6 shows the factor graph formulation                 
of a typical loosely-coupled VIN, where VO measurement is incorporated as a state-to-state measurement. 
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Fig. 6. This figure shows an example factor graph of a typical loosely-coupled VIN. The red factors are                  
IMU measurements and the green factors are VO measurement. ​There are no landmarks information since               
visual information is precomputed into state-to-state odometry constraint. 
  
In tightly-coupled systems, visual information is directly incorporated into the factor graph and jointly              
optimized with inertial information. Fig. 5 shows an example of a typical tightly-coupled system, where               
the green factors represent visual landmark measurements, and the red factors represent inertial             
measurements. In addition to raw measurements, tightly-coupled systems incorporate visual landmarks in            
the states, as represented by yellow circles. The additional visual landmark states provide consistent and               
more accurate estimation compared to loosely-coupled frameworks. 
In general, VIN algorithms consist of a frontend and a backend module as shown in Fig. 7. In a                   
loosely-coupled VIN, the frontend module is the VO algorithm as discussed previously. In a              
tightly-coupled VIN, the frontend of VIN performs data associations, which receives visual information             
from the cameras and computes features such as points, lines, or planes [5], [6]. These features are                 
matched between frames and provide input to the backend module. The backend module combines visual               
features and inertial information to perform joint optimization using optimizers such as iSAM2 [9] and               
g2o [16]. 
 

Fig. 7. This graph shows the general framework of a VIN system, which includes a frontend and a                  
backend modules. The frontend module computes visual features and the backend modules combine these              
features with inertial measurements for joint optimization. 
 
Proposed Approach 
In this work, we present a sparse, tightly-coupled fixed-lag smoothing VIN system for stereo cameras and                
an IMU. Our fixed-lag smoothing based approach maintains a fixed number of past states in the factor                 
graph enabling it to bound the computation complexity while maintaining higher accuracy than traditional              
filtering-based systems. The following sections describe the frontend and backend modules of our system              
in detail. As shown earlier in Fig. 7, the frontend module performs data association while the backend                 
module performs the joint optimization. 
  

7 

 



WM2018 Conference, March 18 – 27, 2018, Phoenix, Arizona, USA 
 

Frontend Module 
The stereo camera system provides images at a rate of 10Hz. Upon receiving raw images, stereo                
rectification is performed to obtain undistorted stereo images. We then adopt a sparse feature-based              
method using Shi-Tomasi corner detector and Kanade-Lucas-Tomasi (KLT) feature-tracking algorithm          
[7] to track features in temporal images as well as stereo images. To ensure sufficient space between                 
features, a separation distance of 20 pixels is used to evenly spread features across the entire image. Each                  
feature is associated with a unique identification number, pixel location, and the frame in which it is                 
detected. Mismatched features are rejected using the Random Sample Consensus (RANSAC) in the final              
step. Our frontend pipeline is lightweight and requires minimal computational resources. Using 300-500             
features, our frontend module can process 80-100 frames per second, which surpasses the frame rate of                
standard cameras. Fig. 8 shows the frontend block diagram and an example output of the frontend                
module. 

     
Fig. 8. Left) The block diagram shows the pipeline of our frontend module. After receiving raw stereo                 
images, first stereo rectification is performed. We then use Shi-Tomashi and KLT to track temporal as                
well as stereo features. Right) The output of our frontend modules includes temporal feature matching               
using Kanade-Lucas-Tomasi (KLT) tracking and stereo feature matching. The top-left image shows left             
camera frame, and the other three frames are right camera frames. The top horizontal green lines show                 
stereo matching with epipolar constraints, while the vertical green lines show disparity between each              
feature match. 
 

Backend Module 
The backend module performs nonlinear optimization for a tightly-coupled, fixed-lag smoothing-based           
estimation objective. We formulate this optimization as a factor graph as​ ​​shown in Fig. 9.  
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Fig. 9. Our factor graph formulation consists of three types of factors: prior factor, smart factors, and IMU                  
preintegration factors. The only states we are estimating are poses, velocities, and biases. 
 

Each state is modeled as a variable node in the graph while each measurement residual is modeled as a  xi                   
factor node. Since each state in the factor graph corresponds to a camera frame , our backend     xi           I i    
module needs to be able to perform optimization at the frame rate of the camera. Consider a fixed-lag                  
window of  states, the full state vector  is defined as collections of camera states  as:n χ ni  

x , …, x ]χ = [ 1   n  

p , , ]xi = [ i vi bi  

Within each state , is the 3D pose; is the linear velocity; and is the acceleration and angular   xi  pi     v   i       bi      
velocity biases. Each visual feature also known as a landmark is modeled as a measurement factor called                 
smart factor [13]. A smart factor internally estimates its landmark position but only constraints poses               
where the landmark is visible. The use of smart factors as opposed to modeling each landmark in the state                   
vector significantly reduces the dimension of the full state vector, and therefore improves efficiency.              
Between consecutive states, because an IMU is operating at a much higher rate, there are numerous IMU                 
measurements. Instead of modeling each inertial measurement as one factor, we employed the             
preintegration theory by Forster et al. [2]. It accumulates inertial measurements into a single relative pose                
constraints called an IMU preintegration factor, which also reduces computational complexity in            
optimization. Interested readers may refer to [2] for complete mathematical derivation of the             
preintegration theory. 
At every camera frame, we jointly optimize visual and inertial information within a single optimization               
framework. We assume measurement and motions models with added Gaussian noise. The resulting             
optimization is a maximum a posteriori (MAP) estimation of the posterior probability:  

(χ |Z ) ∝p(χ )p(Z |χ )                   (χ ) (z |x , x ) (z |x )p k k 0 k k = p 0 ∏
 

(i,j)∈Ik

p ij
imu

i  j ∏
 

i∈Ik

∏
 

l∈C i

p il
cam

i  
 
 

(Eq. 1) 

which can be further reduced to nonlinear least squares minimization by taking the negative logarithm:  
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where, represents the residual errors, and the corresponding covariance matrices. The MAP estimate r       Σ         
in (Eq. 2) consists of three terms. The first term corresponds to the prior, the second to the inertial                   
measurements, and the third to the visual measurements. 
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EXPERIMENTAL EVALUATION 
 
Implementation Details 
We implemented our VIN using OpenCV library for the frontend module and GTSAM library [4] for the                 
backend module. The computation of the MAP estimate in (Eq. 2) is based on Levenberg-Marquardt               
(LM) algorithm. Because our VIN uses fixed-lag smoothing, full optimization using LM still promises              
real-time operation. Our factor graph formulation is also suitable for using state-of-the-art incremental             
smoothing approach, iSAM2 [9], which exploits matrix sparsity and the fact that new measurements only               
affect local variables. For control and mapping applications where high- rate state estimates are required,               
our VIN is capable of performing state estimate at IMU rates even if optimization occurs at camera rates.                  
Between two states , we apply inertial propagation since IMU measurement is reliable in the   ,xi xj             
short-term. This is assuming the optimizer has correctly estimated the biases after optimization. 
 
Results and Analysis 
To validate our VIN, we tested on our custom datasets and the European Robotics Challenge (EuRoC)                
dataset [8]. Our own dataset has camera images recorded at 10Hz with a resolution of 640x512, and the                  
IMU recorded at 250Hz. Our custom dataset provides basic validation by moving the sensing device in a                 
smooth manner in a well-textured environment. We also use a public dataset, the EuRoC dataset, for                
benchmarking our VIN system. It consists of a series of trajectories ranging from easy to difficult                
scenarios such as poor lighting conditions or fast motions. Fig. 10 shows an example from the EuRoC                 
dataset (Machine Hall 01 dataset) with relevant statistics in TABLE I. This particular dataset has a total                 
length of 80.6 meters and total time of 183 seconds. Its environment is feature rich, and thus provides                  
sufficient texture for the stereo vision sensor. 
 

 
Fig. 10. (Left) Result of our VIN on EuRoC dataset “Machine Hall 01”. The yellow line represents the                  
trajectory of our VIN. The blue dots are point cloud representing the feature points used by the algorithm.                  
(Right) Comparison between our result vs. ground truth. There is a small rotational difference so the two                 
trajectories do not perfectly align. 
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TABLE I. Machine Hall 01 Dataset Statistics 

 

Absolute Trajectory 
Error (ATE) 

 RMSE Mean Median Std Min Max 

Positional (m) 0.130672  0.122982  0.117527  0.044164   0.025472  0.237720  

Relative Pose Error 
(RPE) 

Translational (m) 0.037452  0.031576  0.026708  0.020140  0.001040  0.164382 

Rotational (°) 0.651658  0.505816  0.406956   0.410863  0.016415  3.729380 

 

 

 
Fig. 11. (Top-left) Result of our custom dataset, where we walked in a 25m loop while constantly rotating                  
the sensor device. The yellow line represents the trajectory of our VIN. The pink dots are point cloud                  
representing the feature points used by the algorithm. (Top-right) The result of final translational error of                
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0.43m. This results in a 1.72% error. (Bottom) Combining mapping of a wall with stereo disparity and                 
odometry.  
Our dataset mainly includes indoor data. To collect the data, we hand-carried the sensing device indoor in                 
a well-textured environment from a known start and end location. Fig. 11 is one example where we                 
walked in a loop of 25m, while constantly rotated the sensing device to test its robustness against                 
rotations. The final translational error is 0.43m, which results in 1.72% error. Our VIN is also ready to be                   
incorporated into other mapping algorithms. For example, from the stereo rectification algorithm from the              
frontend module, we can obtain the disparity map from the stereo sensing device. The bottom graph of                 
Fig. 11 shows one example where we perform 3D mapping using the disparity map with our VIN. 
 
CONCLUSION 
We have presented a system for underwater inspection of spent nuclear fuel storage basins. We have                
described our custom sensor pod design that combines multiple complementary sensors and provides             
accurate time synchronization. We have further described our algorithmic approach applying           
state-of-the-art robotic technologies to provide localized images and 3D models. We have evaluated our              
approach in air, showing localization with low drift. 
Next steps include testing with the sensor pod in an underwater environment. At first, the sensor pod will                  
be moved manually on a stick to collect data. Future development will explore options for a free                 
swimming, neutrally buoyant robot platform to extend the reach of the sensing areas not accessible by                
manual operation with a stick. This could be achieved through treads or wheels that move the robot on the                   
floor or on the side of the basin as a wall crawler. Thrusters provide another option for mobility that could                    
be used standalone or in tandem with the previous methods described. 
Furthermore, we will address the mapping aspects in a simultaneous localization and mapping (SLAM)              
framework. This will address two goals: creating high resolution 3D map for inspection and using the                
maps on the fly for re-localization, further eliminating drift in the localization estimate. 
Finally, a third camera will be integrated into the system that faces the surface of the water, with two                   
LEDs placed close to the water surface. A wide-angle lens allows the camera to see the LEDs even at                   
fairly shallow depth. Detection in the camera provides two angles to each LED, and when combined with                 
inertial and pressure provide a global estimate for all six degrees of freedom. The two LEDs will be                  
rigidly attached to a bar with a fixed baseline. They are controlled from the top-side laptop to provide                  
robust detection as well as identification of each LED, even through several meters of water and                
interference from ceiling lights. 
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